Skip to contents

Introduction

This document introduces you to a basic set of functions that describe data continuous data. The other two vignettes introduce you to functions that describe categorical data and visualization options.

Data

We have modified the mtcars data to create a new data set mtcarz. The only difference between the two data sets is related to the variable types.

str(mtcarz)
#> 'data.frame':    32 obs. of  11 variables:
#>  $ mpg : num  21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
#>  $ cyl : Factor w/ 3 levels "4","6","8": 2 2 1 2 3 2 3 1 1 2 ...
#>  $ disp: num  160 160 108 258 360 ...
#>  $ hp  : num  110 110 93 110 175 105 245 62 95 123 ...
#>  $ drat: num  3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
#>  $ wt  : num  2.62 2.88 2.32 3.21 3.44 ...
#>  $ qsec: num  16.5 17 18.6 19.4 17 ...
#>  $ vs  : Factor w/ 2 levels "0","1": 1 1 2 2 1 2 1 2 2 2 ...
#>  $ am  : Factor w/ 2 levels "0","1": 2 2 2 1 1 1 1 1 1 1 ...
#>  $ gear: Factor w/ 3 levels "3","4","5": 2 2 2 1 1 1 1 2 2 2 ...
#>  $ carb: Factor w/ 6 levels "1","2","3","4",..: 4 4 1 1 2 1 4 2 2 4 ...

Data Screening

The ds_screener() function will screen a data set and return the following: - Column/Variable Names - Data Type - Levels (in case of categorical data) - Number of missing observations - % of missing observations

ds_screener(mtcarz)
#> -----------------------------------------------------------------------
#> |  Column Name  |  Data Type  |  Levels   |  Missing  |  Missing (%)  |
#> -----------------------------------------------------------------------
#> |      mpg      |   numeric   |    NA     |     0     |       0       |
#> |      cyl      |   factor    |   4 6 8   |     0     |       0       |
#> |     disp      |   numeric   |    NA     |     0     |       0       |
#> |      hp       |   numeric   |    NA     |     0     |       0       |
#> |     drat      |   numeric   |    NA     |     0     |       0       |
#> |      wt       |   numeric   |    NA     |     0     |       0       |
#> |     qsec      |   numeric   |    NA     |     0     |       0       |
#> |      vs       |   factor    |    0 1    |     0     |       0       |
#> |      am       |   factor    |    0 1    |     0     |       0       |
#> |     gear      |   factor    |   3 4 5   |     0     |       0       |
#> |     carb      |   factor    |1 2 3 4 6 8|     0     |       0       |
#> -----------------------------------------------------------------------
#> 
#>  Overall Missing Values           0 
#>  Percentage of Missing Values     0 %
#>  Rows with Missing Values         0 
#>  Columns With Missing Values      0

Summary Statistics

The ds_summary_stats function returns a comprehensive set of statistics including measures of location, variation, symmetry and extreme observations.

ds_summary_stats(mtcarz, mpg)
#> -------------------------------- Variable: mpg --------------------------------
#> 
#>                         Univariate Analysis                          
#> 
#>  N                       32.00      Variance                36.32 
#>  Missing                  0.00      Std Deviation            6.03 
#>  Mean                    20.09      Range                   23.50 
#>  Median                  19.20      Interquartile Range      7.38 
#>  Mode                    10.40      Uncorrected SS       14042.31 
#>  Trimmed Mean            19.95      Corrected SS          1126.05 
#>  Skewness                 0.67      Coeff Variation         30.00 
#>  Kurtosis                -0.02      Std Error Mean           1.07 
#> 
#>                               Quantiles                               
#> 
#>               Quantile                            Value                
#> 
#>              Max                                  33.90                
#>              99%                                  33.44                
#>              95%                                  31.30                
#>              90%                                  30.09                
#>              Q3                                   22.80                
#>              Median                               19.20                
#>              Q1                                   15.43                
#>              10%                                  14.34                
#>              5%                                   12.00                
#>              1%                                   10.40                
#>              Min                                  10.40                
#> 
#>                             Extreme Values                            
#> 
#>                 Low                                High                
#> 
#>   Obs                        Value       Obs                        Value 
#>   15                         10.4        20                         33.9  
#>   16                         10.4        18                         32.4  
#>   24                         13.3        19                         30.4  
#>    7                         14.3        28                         30.4  
#>   17                         14.7        26                         27.3

You can pass multiple variables as shown below:

ds_summary_stats(mtcarz, mpg, disp)
#> -------------------------------- Variable: mpg --------------------------------
#> 
#>                         Univariate Analysis                          
#> 
#>  N                       32.00      Variance                36.32 
#>  Missing                  0.00      Std Deviation            6.03 
#>  Mean                    20.09      Range                   23.50 
#>  Median                  19.20      Interquartile Range      7.38 
#>  Mode                    10.40      Uncorrected SS       14042.31 
#>  Trimmed Mean            19.95      Corrected SS          1126.05 
#>  Skewness                 0.67      Coeff Variation         30.00 
#>  Kurtosis                -0.02      Std Error Mean           1.07 
#> 
#>                               Quantiles                               
#> 
#>               Quantile                            Value                
#> 
#>              Max                                  33.90                
#>              99%                                  33.44                
#>              95%                                  31.30                
#>              90%                                  30.09                
#>              Q3                                   22.80                
#>              Median                               19.20                
#>              Q1                                   15.43                
#>              10%                                  14.34                
#>              5%                                   12.00                
#>              1%                                   10.40                
#>              Min                                  10.40                
#> 
#>                             Extreme Values                            
#> 
#>                 Low                                High                
#> 
#>   Obs                        Value       Obs                        Value 
#>   15                         10.4        20                         33.9  
#>   16                         10.4        18                         32.4  
#>   24                         13.3        19                         30.4  
#>    7                         14.3        28                         30.4  
#>   17                         14.7        26                         27.3  
#> 
#> 
#> 
#> -------------------------------- Variable: disp --------------------------------
#> 
#>                           Univariate Analysis                            
#> 
#>  N                         32.00      Variance               15360.80 
#>  Missing                    0.00      Std Deviation            123.94 
#>  Mean                     230.72      Range                    400.90 
#>  Median                   196.30      Interquartile Range      205.18 
#>  Mode                     275.80      Uncorrected SS       2179627.47 
#>  Trimmed Mean             228.00      Corrected SS          476184.79 
#>  Skewness                   0.42      Coeff Variation           53.72 
#>  Kurtosis                  -1.07      Std Error Mean            21.91 
#> 
#>                                 Quantiles                                 
#> 
#>                Quantile                              Value                 
#> 
#>               Max                                    472.00                
#>               99%                                    468.28                
#>               95%                                    449.00                
#>               90%                                    396.00                
#>               Q3                                     326.00                
#>               Median                                 196.30                
#>               Q1                                     120.83                
#>               10%                                    80.61                 
#>               5%                                     77.35                 
#>               1%                                     72.53                 
#>               Min                                    71.10                 
#> 
#>                               Extreme Values                              
#> 
#>                  Low                                  High                 
#> 
#>   Obs                          Value       Obs                          Value 
#>   20                           71.1        15                            472  
#>   19                           75.7        16                            460  
#>   18                           78.7        17                            440  
#>   26                            79         25                            400  
#>   28                           95.1         5                            360

If you do not specify any variables, it will detect all the continuous variables in the data set and return summary statistics for each of them.

Frequency Distribution

The ds_freq_table function creates frequency tables for continuous variables. The default number of intervals is 5.

ds_freq_table(mtcarz, mpg, 4)
#>                                 Variable: mpg                                 
#> |---------------------------------------------------------------------------|
#> |      Bins       | Frequency | Cum Frequency |   Percent    | Cum Percent  |
#> |---------------------------------------------------------------------------|
#> |  10.4  -  16.3  |    10     |      10       |    31.25     |    31.25     |
#> |---------------------------------------------------------------------------|
#> |  16.3  -  22.1  |    13     |      23       |    40.62     |    71.88     |
#> |---------------------------------------------------------------------------|
#> |  22.1  -   28   |     5     |      28       |    15.62     |     87.5     |
#> |---------------------------------------------------------------------------|
#> |   28   -  33.9  |     4     |      32       |     12.5     |     100      |
#> |---------------------------------------------------------------------------|
#> |      Total      |    32     |       -       |    100.00    |      -       |
#> |---------------------------------------------------------------------------|

Histogram

A plot() method has been defined which will generate a histogram.

k <- ds_freq_table(mtcarz, mpg, 4)
plot(k)

Auto Summary

If you want to view summary statistics and frequency tables of all or subset of variables in a data set, use ds_auto_summary().

ds_auto_summary_stats(mtcarz, disp, mpg)
#> -------------------------------- Variable: disp --------------------------------
#> 
#> ------------------------------ Summary Statistics ------------------------------
#> 
#> -------------------------------- Variable: disp --------------------------------
#> 
#>                           Univariate Analysis                            
#> 
#>  N                         32.00      Variance               15360.80 
#>  Missing                    0.00      Std Deviation            123.94 
#>  Mean                     230.72      Range                    400.90 
#>  Median                   196.30      Interquartile Range      205.18 
#>  Mode                     275.80      Uncorrected SS       2179627.47 
#>  Trimmed Mean             228.00      Corrected SS          476184.79 
#>  Skewness                   0.42      Coeff Variation           53.72 
#>  Kurtosis                  -1.07      Std Error Mean            21.91 
#> 
#>                                 Quantiles                                 
#> 
#>                Quantile                              Value                 
#> 
#>               Max                                    472.00                
#>               99%                                    468.28                
#>               95%                                    449.00                
#>               90%                                    396.00                
#>               Q3                                     326.00                
#>               Median                                 196.30                
#>               Q1                                     120.83                
#>               10%                                    80.61                 
#>               5%                                     77.35                 
#>               1%                                     72.53                 
#>               Min                                    71.10                 
#> 
#>                               Extreme Values                              
#> 
#>                  Low                                  High                 
#> 
#>   Obs                          Value       Obs                          Value 
#>   20                           71.1        15                            472  
#>   19                           75.7        16                            460  
#>   18                           78.7        17                            440  
#>   26                            79         25                            400  
#>   28                           95.1         5                            360  
#> 
#> 
#> 
#> NULL
#> 
#> 
#> ---------------------------- Frequency Distribution ----------------------------
#> 
#>                                Variable: disp                                 
#> |---------------------------------------------------------------------------|
#> |      Bins       | Frequency | Cum Frequency |   Percent    | Cum Percent  |
#> |---------------------------------------------------------------------------|
#> |  71.1  - 151.3  |    12     |      12       |     37.5     |     37.5     |
#> |---------------------------------------------------------------------------|
#> | 151.3  - 231.5  |     5     |      17       |    15.62     |    53.12     |
#> |---------------------------------------------------------------------------|
#> | 231.5  - 311.6  |     6     |      23       |    18.75     |    71.88     |
#> |---------------------------------------------------------------------------|
#> | 311.6  - 391.8  |     5     |      28       |    15.62     |     87.5     |
#> |---------------------------------------------------------------------------|
#> | 391.8  -  472   |     4     |      32       |     12.5     |     100      |
#> |---------------------------------------------------------------------------|
#> |      Total      |    32     |       -       |    100.00    |      -       |
#> |---------------------------------------------------------------------------|
#> 
#> 
#> -------------------------------- Variable: mpg --------------------------------
#> 
#> ------------------------------ Summary Statistics ------------------------------
#> 
#> -------------------------------- Variable: mpg --------------------------------
#> 
#>                         Univariate Analysis                          
#> 
#>  N                       32.00      Variance                36.32 
#>  Missing                  0.00      Std Deviation            6.03 
#>  Mean                    20.09      Range                   23.50 
#>  Median                  19.20      Interquartile Range      7.38 
#>  Mode                    10.40      Uncorrected SS       14042.31 
#>  Trimmed Mean            19.95      Corrected SS          1126.05 
#>  Skewness                 0.67      Coeff Variation         30.00 
#>  Kurtosis                -0.02      Std Error Mean           1.07 
#> 
#>                               Quantiles                               
#> 
#>               Quantile                            Value                
#> 
#>              Max                                  33.90                
#>              99%                                  33.44                
#>              95%                                  31.30                
#>              90%                                  30.09                
#>              Q3                                   22.80                
#>              Median                               19.20                
#>              Q1                                   15.43                
#>              10%                                  14.34                
#>              5%                                   12.00                
#>              1%                                   10.40                
#>              Min                                  10.40                
#> 
#>                             Extreme Values                            
#> 
#>                 Low                                High                
#> 
#>   Obs                        Value       Obs                        Value 
#>   15                         10.4        20                         33.9  
#>   16                         10.4        18                         32.4  
#>   24                         13.3        19                         30.4  
#>    7                         14.3        28                         30.4  
#>   17                         14.7        26                         27.3  
#> 
#> 
#> 
#> NULL
#> 
#> 
#> ---------------------------- Frequency Distribution ----------------------------
#> 
#>                               Variable: mpg                               
#> |-----------------------------------------------------------------------|
#> |    Bins     | Frequency | Cum Frequency |   Percent    | Cum Percent  |
#> |-----------------------------------------------------------------------|
#> | 10.4 - 15.1 |     6     |       6       |    18.75     |    18.75     |
#> |-----------------------------------------------------------------------|
#> | 15.1 - 19.8 |    12     |      18       |     37.5     |    56.25     |
#> |-----------------------------------------------------------------------|
#> | 19.8 - 24.5 |     8     |      26       |      25      |    81.25     |
#> |-----------------------------------------------------------------------|
#> | 24.5 - 29.2 |     2     |      28       |     6.25     |     87.5     |
#> |-----------------------------------------------------------------------|
#> | 29.2 - 33.9 |     4     |      32       |     12.5     |     100      |
#> |-----------------------------------------------------------------------|
#> |    Total    |    32     |       -       |    100.00    |      -       |
#> |-----------------------------------------------------------------------|

Group Summary

The ds_group_summary() function returns descriptive statistics of a continuous variable for the different levels of a categorical variable.

k <- ds_group_summary(mtcarz, cyl, mpg)
k
#>                                            by                                             
#> -----------------------------------------------------------------------------------------
#> |     Statistic/Levels|                    4|                    6|                    8|
#> -----------------------------------------------------------------------------------------
#> |                  Obs|                   11|                    7|                   14|
#> |              Minimum|                 21.4|                 17.8|                 10.4|
#> |              Maximum|                 33.9|                 21.4|                 19.2|
#> |                 Mean|                26.66|                19.74|                 15.1|
#> |               Median|                   26|                 19.7|                 15.2|
#> |                 Mode|                 22.8|                   21|                 10.4|
#> |       Std. Deviation|                 4.51|                 1.45|                 2.56|
#> |             Variance|                20.34|                 2.11|                 6.55|
#> |             Skewness|                 0.35|                -0.26|                -0.46|
#> |             Kurtosis|                -1.43|                -1.83|                 0.33|
#> |       Uncorrected SS|              8023.83|              2741.14|              3277.34|
#> |         Corrected SS|               203.39|                12.68|                 85.2|
#> |      Coeff Variation|                16.91|                 7.36|                16.95|
#> |      Std. Error Mean|                 1.36|                 0.55|                 0.68|
#> |                Range|                 12.5|                  3.6|                  8.8|
#> |  Interquartile Range|                  7.6|                 2.35|                 1.85|
#> -----------------------------------------------------------------------------------------

ds_group_summary() returns a tibble which can be used for further analysis.

k$tidy_stats
#> # A tibble: 3 × 15
#>   cyl   length   min   max  mean median  mode    sd variance skewness kurtosis
#>   <fct>  <int> <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl>    <dbl>    <dbl>    <dbl>
#> 1 4         11  21.4  33.9  26.7   26    22.8  4.51    20.3     0.348   -1.43 
#> 2 6          7  17.8  21.4  19.7   19.7  21    1.45     2.11   -0.259   -1.83 
#> 3 8         14  10.4  19.2  15.1   15.2  10.4  2.56     6.55   -0.456    0.330
#> # ℹ 4 more variables: coeff_var <dbl>, std_error <dbl>, range <dbl>, iqr <dbl>

Box Plot

A plot() method has been defined for comparing distributions.

k <- ds_group_summary(mtcarz, cyl, mpg)
plot(k)

Multiple Variables

If you want grouped summary statistics for multiple variables in a data set, use ds_auto_group_summary().

ds_auto_group_summary(mtcarz, cyl, gear, mpg)
#>                                            by                                             
#> -----------------------------------------------------------------------------------------
#> |     Statistic/Levels|                    4|                    6|                    8|
#> -----------------------------------------------------------------------------------------
#> |                  Obs|                   11|                    7|                   14|
#> |              Minimum|                 21.4|                 17.8|                 10.4|
#> |              Maximum|                 33.9|                 21.4|                 19.2|
#> |                 Mean|                26.66|                19.74|                 15.1|
#> |               Median|                   26|                 19.7|                 15.2|
#> |                 Mode|                 22.8|                   21|                 10.4|
#> |       Std. Deviation|                 4.51|                 1.45|                 2.56|
#> |             Variance|                20.34|                 2.11|                 6.55|
#> |             Skewness|                 0.35|                -0.26|                -0.46|
#> |             Kurtosis|                -1.43|                -1.83|                 0.33|
#> |       Uncorrected SS|              8023.83|              2741.14|              3277.34|
#> |         Corrected SS|               203.39|                12.68|                 85.2|
#> |      Coeff Variation|                16.91|                 7.36|                16.95|
#> |      Std. Error Mean|                 1.36|                 0.55|                 0.68|
#> |                Range|                 12.5|                  3.6|                  8.8|
#> |  Interquartile Range|                  7.6|                 2.35|                 1.85|
#> -----------------------------------------------------------------------------------------
#> 
#> 
#> 
#>                                            by                                             
#> -----------------------------------------------------------------------------------------
#> |     Statistic/Levels|                    3|                    4|                    5|
#> -----------------------------------------------------------------------------------------
#> |                  Obs|                   15|                   12|                    5|
#> |              Minimum|                 10.4|                 17.8|                   15|
#> |              Maximum|                 21.5|                 33.9|                 30.4|
#> |                 Mean|                16.11|                24.53|                21.38|
#> |               Median|                 15.5|                 22.8|                 19.7|
#> |                 Mode|                 10.4|                   21|                   15|
#> |       Std. Deviation|                 3.37|                 5.28|                 6.66|
#> |             Variance|                11.37|                27.84|                44.34|
#> |             Skewness|                -0.09|                  0.7|                 0.56|
#> |             Kurtosis|                -0.38|                -0.77|                -1.83|
#> |       Uncorrected SS|              4050.52|               7528.9|              2462.89|
#> |         Corrected SS|               159.15|               306.29|               177.37|
#> |      Coeff Variation|                20.93|                21.51|                31.15|
#> |      Std. Error Mean|                 0.87|                 1.52|                 2.98|
#> |                Range|                 11.1|                 16.1|                 15.4|
#> |  Interquartile Range|                  3.9|                 7.08|                 10.2|
#> -----------------------------------------------------------------------------------------

Combination of Categories

To look at the descriptive statistics of a continuous variable for different combinations of levels of two or more categorical variables, use ds_group_summary_interact().

ds_group_summary_interact(mtcarz, mpg, cyl, gear)
#> # A tibble: 8 × 17
#>   cyl   gear    min   max  mean t_mean median  mode  range variance  stdev
#>   <chr> <chr> <dbl> <dbl> <dbl>  <dbl>  <dbl> <dbl>  <dbl>    <dbl>  <dbl>
#> 1 4     3      21.5  21.5  21.5   21.5   21.5  21.5  0       NA     NA    
#> 2 6     3      18.1  21.4  19.8   19.8   19.8  18.1  3.30     5.44   2.33 
#> 3 8     3      10.4  19.2  15.0   15.0   15.2  10.4  8.8      7.70   2.77 
#> 4 4     4      21.4  33.9  26.9   26.9   25.8  22.8 12.5     23.1    4.81 
#> 5 6     4      17.8  21    19.8   19.8   20.1  21    3.2      2.41   1.55 
#> 6 4     5      26    30.4  28.2   28.2   28.2  26    4.4      9.68   3.11 
#> 7 6     5      19.7  19.7  19.7   19.7   19.7  19.7  0       NA     NA    
#> 8 8     5      15    15.8  15.4   15.4   15.4  15    0.800    0.320  0.566
#> # ℹ 6 more variables: skew <dbl>, kurtosis <dbl>, coeff_var <dbl>, q1 <dbl>,
#> #   q3 <dbl>, iqrange <dbl>

Multiple Variable Statistics

The ds_tidy_stats() function returns summary/descriptive statistics for variables in a data frame/tibble.

ds_tidy_stats(mtcarz, mpg, disp, hp)
#> # A tibble: 3 × 16
#>   vars    min   max  mean t_mean median  mode range variance  stdev  skew
#>   <chr> <dbl> <dbl> <dbl>  <dbl>  <dbl> <dbl> <dbl>    <dbl>  <dbl> <dbl>
#> 1 disp   71.1 472   231.   228    196.  276.  401.   15361.  124.   0.420
#> 2 hp     52   335   147.   144.   123   110   283     4701.   68.6  0.799
#> 3 mpg    10.4  33.9  20.1   20.0   19.2  10.4  23.5     36.3   6.03 0.672
#> # ℹ 5 more variables: kurtosis <dbl>, coeff_var <dbl>, q1 <dbl>, q3 <dbl>,
#> #   iqrange <dbl>

Measures

If you want to view the measure of location, variation, symmetry, percentiles and extreme observations as tibbles, use the below functions. All of them, except for ds_extreme_obs() will work with single or multiple variables. If you do not specify the variables, they will return the results for all the continuous variables in the data set.

Measures of Location

ds_measures_location(mtcarz)
#>   variable  n missing   mean trim_mean median   mode
#> 1     disp 32       0 230.72    228.00 196.30 275.80
#> 2     drat 32       0   3.60      3.58   3.70   3.07
#> 3       hp 32       0 146.69    143.57 123.00 110.00
#> 4      mpg 32       0  20.09     19.95  19.20  10.40
#> 5     qsec 32       0  17.85     17.79  17.71  17.02
#> 6       wt 32       0   3.22      3.20   3.33   3.44

Measures of Variation

ds_measures_variation(mtcarz)
#>    var  n   range       iqr     variance          sd coeff_var   std_error
#> 1 disp 32 400.900 205.17500 1.536080e+04 123.9386938  53.71779 21.90947271
#> 2 drat 32   2.170   0.84000 2.858814e-01   0.5346787  14.86638  0.09451874
#> 3   hp 32 283.000  83.50000 4.700867e+03  68.5628685  46.74077 12.12031731
#> 4  mpg 32  23.500   7.37500 3.632410e+01   6.0269481  29.99881  1.06542396
#> 5 qsec 32   8.400   2.00750 3.193166e+00   1.7869432  10.01159  0.31588992
#> 6   wt 32   3.911   1.02875 9.573790e-01   0.9784574  30.41285  0.17296847

Measures of Symmetry

ds_measures_symmetry(mtcarz)
#>    var  n  skewness    kurtosis
#> 1 disp 32 0.4202331 -1.06752340
#> 2 drat 32 0.2927802 -0.45043245
#> 3   hp 32 0.7994067  0.27521159
#> 4  mpg 32 0.6723771 -0.02200629
#> 5 qsec 32 0.4063466  0.86493065
#> 6   wt 32 0.4659161  0.41659467

Percentiles

ds_percentiles(mtcarz)
#>    var  n    min    per_1   per_5  per_10        q1  median     q3   per_90
#> 1 disp 32 71.100 72.52600 77.3500 80.6100 120.82500 196.300 326.00 396.0000
#> 2 drat 32  2.760  2.76000  2.8535  3.0070   3.08000   3.695   3.92   4.2090
#> 3   hp 32 52.000 55.10000 63.6500 66.0000  96.50000 123.000 180.00 243.5000
#> 4  mpg 32 10.400 10.40000 11.9950 14.3400  15.42500  19.200  22.80  30.0900
#> 5 qsec 32 14.500 14.53100 15.0455 15.5340  16.89250  17.710  18.90  19.9900
#> 6   wt 32  1.513  1.54462  1.7360  1.9555   2.58125   3.325   3.61   4.0475
#>      per_95    per_99     max
#> 1 449.00000 468.28000 472.000
#> 2   4.31450   4.77500   4.930
#> 3 253.55000 312.99000 335.000
#> 4  31.30000  33.43500  33.900
#> 5  20.10450  22.06920  22.900
#> 6   5.29275   5.39951   5.424

Extreme Observations

ds_extreme_obs(mtcarz, mpg)
#>    type value index
#> 1  high  33.9    20
#> 2  high  32.4    18
#> 3  high  30.4    19
#> 4  high  30.4    28
#> 5  high  27.3    26
#> 6   low  10.4    15
#> 7   low  10.4    16
#> 8   low  13.3    24
#> 9   low  14.3     7
#> 10  low  14.7    17